A project of the Dark Energy Survey collaboration

Latest

Video

Dancing in the dark

 

“Work like you don’t need the money. Love like you’ve never been hurt. Dance like nobody’s watching.”–Satchel Paige

To the silent tune of gravity, congeries of celestial objects – big and small – dance each night away. In the darkness beyond Neptune, this troupe of Kuiper Belt objects (KBOs) had been dancing like no one was watching – until now.

Their dance is a slow one, for Kuiper Belt objects take centuries to complete one orbit. These KBOs, each a few hundred kilometers in size, have been discovered by DES over the last two and a half years. (One of them was described here earlier.) Suppose you knew nothing about gravity. What would you make of a pattern like this? How would you explain it? The laws that give rise to such intricate celestial swirls must be incredibly complicated, right?

Ancient people marked the wanderings of the planets from night to night and season to season. They noticed that they moved across the sky at wildly different rates: sometimes, they appeared to stop, turn around, and move backwards against the canopy of fixed stars, before turning again and resuming their course. Ingenious models were developed to explain this complicated dance. But they became increasingly unwieldy, and even worse, failed to describe new and more accurate observations.

It took two scientific revolutions—first from Copernicus and then from Newton—to show that planetary motion could be readily explained by a single simple equation, the law of gravitation. The hidden pattern suddenly became clear.

The graceful pirouette executed by a KBOs arises from a combination of two motions. Its centuries-long orbit produces a slow eastward drift that carries it about the width of one DECam field of view per year. But we observe these objects from a moving platform, planet Earth. As the earth makes its journey around the sun, we observe the KBO from different perspectives, sometimes from 150 million kilometers on one side of the sun, six months later from 150 million kilometers on the other, and at other times from somewhere in between. This results in an annual back-and-forth motion relative to the distant stars that’s superimposed on the KBO’s own orbital motion. Watch how your fingertip moves against background objects when you move your head from side to side and you’ll get the idea.

Physics aims to distill order from complexity, to explain the vast array of natural phenomena with a small number of simple laws. Eventually, physicists learned that Newton’s law of gravitation fell short in certain situations and needed to be superceded by Einstein’s theory of general relativity.

Today, gravity confronts our generation with a new puzzle on the grandest of scales: Why is the expansion of the universe accelerating? Perhaps some new law will explain the mystery of dark energy with the as much elegance and simplicity as the dance of the planets. That’s the hope that keeps our dark energy detectives patiently looking up.

 

Det. Dave Gerdes [University of Michigan]

 

Image

Una sopa cósmica con fundamento

 

En lo más profundo del cosmos, entre las fuerzas oscuras y las energías que le dan vida, arde una llama sobre la que cuece… un caldo.

La historia de la expansión del universo está dominada por la materia y la energía oscura. Sin embargo, son los elementos cotidianos de la tabla periódica los que nos permiten estudiarlo y entender su historia. En esta entrada os proporcionamos una pizca de las ideas sobre cómo comenzó su existencia esta sopa cósmica de elementos.

Casi todos los elementos se crearon en la primera media hora tras el Big Bang. El potaje resultante resultó más bien soso: nueve núcleos de hidrógeno (un protón) por cada núcleo de helio (dos protones) y casi nada del resto. Incluso rebuscando entre mil millones de núcleos, tendrías suerte si encontraras algún sabroso litio de tres núcleos.

Afortunadamente, en los 13700 millones de años posteriores, las cosas se pusieron un poco más interesantes. La fusión nuclear, tan difícil de reproducir en la Tierra, es habitual en las estrellas. Gracias a ella existe el carbono de nuestras células y el hierro de nuestra sangre.

El sabor, densidad y temperatura de esta sopa de elementos varía considerablemente. Pensad en nuestro propio Sistema Solar: desde las presiones y temperaturas extremas del núcleo del Sol, hasta el frío vacío interplanetario. Estas variaciones se repiten por toda la Vía Láctea y en el resto de las galaxias.

Estos tres hechos, que la mayoría de los elementos se crearon poco después del Big Bang, que el universo se enriqueció después y la enorme variabilidad de condiciones para dichos elementos, suponen una gran ventaja para el proyecto Dark Energy Survey.

Tomad como ejemplo los cúmulos de galaxias, como los que aparecen en la presentación que encabeza esta entrada (y descritos con más detalle más abajo). Estas estructuras son tan enormes, que pueden considerarse “mini-universos” por derecho propio. Los cúmulos contienen varias docenas de galaxias, a veces cientos. Entre ellas existe un velo de gas tenue.

Tanto el gas como las galaxias están atrapadas dentro de los confines del cúmulo por la materia oscura. Podría decirse que la materia oscura actúa como la tapa de una cacerola. Así como la tapa evita que se evapore todo el agua, la materia oscura evita que las galaxias, muchas de las cuales se mueven a más de un millón de kilómetros por hora, se dispersen.  Sin embargo, en las fronteras de los cúmulos de mayor tamaño, la energía oscura empieza a competir seriamente con la gravedad, y algunas de las galaxias se ven arrancadas de su cúmulo original. Esta competición entre energía oscura y gravedad a estas escalas es lo que convierte a los cúmulos en magníficas sondas para explorar la energía oscura.

Las partículas de gas se hallan tan calientes que los electrones (cargados negativamente) y los núcleos (cargados positivamente) se separan convirtiendo el gas en un plasma. Éste brilla con intensidad en la zona de los rayos X en el espectro electromagnético, que puede ser detectado por satélites como XMM-Newton y Chandra. El plasma también crea una sombra en el Fondo Cósmico de Microondas (el pulso de luz emitido en todas direcciones unos pocos cientos de miles de años después del Big Bang), de manera que también puede detectarse por radiotelescopios como el South Pole Telescope.

Por contra, los elementos atrapados en las estrellas se hallan mucho más fríos, y a densidades muy superiores, y brillan con fuerza con luz visible. La luz de las estrellas no sólo permite detectar cientos de miles de cúmulos, sino también medir la distancia a los mismos (a través de una técnica conocida como desplazamientos al rojo fotométricos), y hacer estimaciones preliminares de sus masas. Estos valores de masa han de ser refinados antes de poder usar estos cúmulos para hacer cosmología, y la información del plasma de los telescopios de rayos X y radio es esencial para eso.

En la presentación de arriba mostramos varios ejemplos de los cientos de cúmulos registrados por el Dark Energy Survey que han sido observados también por el muestreo de cúmulos de XMM-Newton. La intensidad de la emisión del plasma caliente se indica con los contornos rojos. Los especialistas en rayos X trabajan con ambos conjuntos de datos (luz visible y rayos X) para calibrar las masas de los cúmulos del Dark Energy Survey.

Por último, ¿por qué decimos en el título con “fundamento”? Bueno, resulta que “fundamento” es sinónimo de “quintaesencia”, y este es el término adoptado por los cosmólogos como palabra comodín para referirse a las teorías que permiten una variación en el tiempo en las propiedades de la energía oscura.

 

Detective Kathy Romer [Universidad de Sussex]

Imagen: Detectives Phil Rooney [Universidad de Sussex] y Chris Miller [Universidad de Michigan].

Traducción: Nacho Sevilla

 

Video

Sopa cósmica para a alma

 

Cercado por forças e energias ocultas aos olhos mas que trabalham ativamente no cosmos, um fogo arde… fervendo uma sopa.

A história de expansão do Universo é dominada pela matéria escura e energia escura. Entretanto, são os elementos na tabela periódica que nos permitem estudar e compreender essa história. Nesse artigo damos um gostinho de como a sopa cósmica de elementos surgiu.

Quase todos os elementos apareceram dentro dos primeiros 30 minutos após o Big Bang. O caldo resultante era um pouco “insosso”: 9 núcleos de hidrogênio (um próton) para um núcleo de hélio (dois prótons) e quase mais nada do resto. Você teria que caçar muito, através de bilhões de núcleos, para encontrar um delicioso “naco” de lítio (três prótons).

Felizmente, ao longo dos últimos 13,7 bilhões de anos, a sopa cósmica levou um pouco mais de tempero. A fusão nuclear – tão inatingível na Terra – é corriqueira nas estrelas: temos que agradecer à fusão nuclear pelo carbono em nossas células, pelo ferro em nosso sangue.

O sabor, densidade e temperatura da sopa de elementos varia bastante. Veja o nosso sistema Solar por exemplo: das pressões e temperaturas extremas no núcleo do Sol, ao frio e o vazio do espaço que cerca os planetas. Essas variações se repetem por toda a Via-Láctea e em todas as outras galáxias no universo também.

Esses três conceitos – que todos os elementos se formaram logo após o Big Bang; que uma pequena quantidade de elementos pesados foi adicionada deste então; e que os elementos são distribuídos de forma heterogênea – são de grande utilidade para o Dark Energy Survey.

Veja por exemplo os aglomerados de galáxias, como os que estão no video acima (e descrito em detalhes mais tarde). Essas estruturas são tão grandes que podem ser consideradas mini Universos. Aglomerados contem várias dezenas de galáxias, às vezes até centenas. No espaço entre as galáxias habita uma tênue neblina de gás.

Tanto o gás quanto as galáxias estão presas dentro das fronteiras do aglomerado pela matéria escura. A matéria escura atua como a tampa em uma panela, assim como a tampa impede que a água na panela evapore toda rapidamente, a matéria escura impede as galáxias – as quais estão se movendo a milhões de quilômetros por hora – de fugir. Entretanto, nas bordas dos maiores aglomerados, a energia escura compete com a gravidade e as galáxias começam a escapar. É essa interação entre gravidade e energia escura que faz com que aglomerados de galáxias sejam tão úteis para estudos cosmológicos.

As partículas do gás em aglomerados são tão quentes que elétrons (carga negativa) e núcleos (carga positiva) são separados um do outro (opostos se atraem) – essa forma de gás é conhecida como plasma. O plasma brilha intensamente na parte do espectro eletromagnético conhecida como raio-X e pode ser detectada por satélites como XMM-Newton e Chandra. Esse plasma também produz uma sombra sobre a Radiação Cósmica de Fundo (um pulso de luz emitido por todo o Universo uns cem mil anos após o Big Bang), o que significa que ele também pode ser detectado em radio-telescópios tais como o South Pole Telescope.

Diferentemente do gás, os elementos presos em estrelas são mais frios, e em densidades muito maiores, emitem luz visível. A luz das estrelas permite que o Dark Energy Survey não apenas detecte milhares de aglomerados, mas também meça suas distâncias (através de uma técnica conhecida como “desvio para o vermelho fotométrico”), e faça uma primeira estimativa de suas massas. Essas massas precisam ser refinadas antes de serem usadas em estudos cosmológicos, e observações do plasma feitas por telescópios no raio-X e rádio são fundamentais para isso.

No vídeo acima mostramos alguns exemplos das centenas de aglomerados do Dark Energy Survey que também foram observados pelo levantamento XMM-Newton Cluster Survey. A intensidade da emissão em raio-X vinda do plasma quente é indicada pelos contornos vermelhos. Especialistas em raio-X estão trabalhando com esses dois conjuntos de dados para calibrar as massas dos aglomerados do Dark Energy Survey.

Finalmente… porque “para a alma”? Bom, “alma” pode ser um sinônimo de “quintessência”, e a Quintessência foi um termo adotado por muitos cosmólogos para descrever genericamente teorias que permitem que as propriedades da Energia Escura varie com o tempo.

Det. Kathy Romer [Universidade de Sussex]

Créditos da Imagem: Det.’s Phil Rooney [Universidade de Sussex] e Chris Miller [Universidade de Michigan]

Trad. Det. Ricardo Ogando

Video

Cosmic soup for the soul

 

Amidst the dark forces and energies at work across the cosmos, a fire brews, a soup simmers.

The expansion history of the Universe is dominated by dark matter and dark energy. However, it is the elements in the periodic table that allow us to study and understand that history. In this posting we give a flavor for how the cosmic soup of elements came into existence.

Almost all the elements came into existence within 30 minutes of the Big Bang. The resulting broth was rather dull: 9 hydrogen nuclei (one proton) to every helium nucleus (two protons) and almost nothing of anything else. Even if you sifted through a billion nuclei you’d still be lucky enough to find anything as tasty as lithium (three protons).

Fortunately, over the intervening 13.7 billion years, the cosmic soup has become a little more interesting. Nuclear fusion – so hard to reproduce on Earth – is common place in stars: we have fusion to thank for the carbon in our cells, to the iron in our blood.

The flavor, density and temperature of the element soup varies widely. Consider our own Solar system: from the extreme pressures and temperatures inside the Sun’s core, to the cold and empty space between the planets. These variations are replicated throughout the Milky Way and in all the other galaxies in the universe.

These three concepts – that most elements were formed just after the Big Bang; that a smattering of heavier elements have been added since then; and that the elements are distributed non-uniformly – are of great benefit to the Dark Energy Survey.

Take for example clusters of galaxies, like those in the slideshow above (described in more detail later). These structures are so enormous that they can be considered to be mini Universes in their own right. Clusters contain several dozen galaxies, and sometimes as may as several hundred. In between the galaxies is the continuous haze of tenuous gas.

Both the gas and the galaxies are trapped within the confines of the cluster by dark matter. The dark matter acts like the lid on a sauce pan, where the lid stops the pan boiling dry, the dark matter stops the galaxies – which are moving at more than a million miles per hour – from flying away. However, at the outer edges of the very largest clusters, dark energy competes with gravity and the galaxies are starting to be peeled away. It is this interplay of gravity and dark energy that make clusters such useful cosmological probes.

The particles in the gas are so hot that electrons (negatively charged) and nuclei (positively charged) are stripped apart – this form of gas is known as a plasma. The plasma shines brightly in the X-ray part of the electromagnetic spectrum and can be detected by satellites such as XMM-Newton and Chandra. The plasma also casts a shadow on the Cosmic Microwave Background (a pulse of light that was emitted throughout the Universe one hundred thousands years after the Big Bang), meaning it can also be detected with shortwave radio telescopes such as the South Pole Telescope.

By contrast, the elements trapped in the stars are cooler, and at much higher densities, and shine in visible light. Starlight allows the Dark Energy Survey to not only to detect hundreds of thousands of clusters, but also to measure their distances (via a technique known as photometric redshifts), and to make a first estimate of their masses. Those masses need to be refined before we can use the clusters for cosmology, and information of the plasma from X-ray and radio telescopes is essential for that.

In the slideshow above we show several examples of the hundreds of Dark Energy Survey clusters that have also been observed by the XMM-Newton Cluster Survey. The intensity of the X-ray emission coming from the hot plasma is indicated by the red contours. X-ray specialists are working with these two datasets to calibrate the masses of Dark Energy Survey clusters.

Finally… why “for the soul”? Well “soul’’ happens to be a synonym for “quintessence”, and Quintessence has been widely adopted by cosmologists as a catch all term to describe theories that allow for a time variation in the properties of Dark Energy.

 

Det. Kathy Romer [University of Sussex]

Image Credit: Det.’s Phil Rooney [University of Sussex] and Chris Miller [University of Michigan]

Image

Nosso emaranhado escuro: pistas da energia escura

DES0006-4123_20141218_00_gri_20141219_000.edit1.0_950px

Oculto sob um mar de luz, um padrão complexo sussurra e muda lentamente. Este é composto de forças cósmicas praticamente invisíveis. Nesse espaço que separa amontoados de galáxias jaz um espaço vazio e árido. Contudo, enquanto cada galáxia, com seus bilhões de estrelas, tem uma história única de nascimento e evolução, devemos tomar cuidado para não deixar de ver a floresta por conta das árvores. Tomado como um todo, o padrão de aglomerados e vazios em nossos mapas de galáxias podem nos dizer muito sobre as forças escuras que dão forma a nosso universo.

Sloan Digital Sky Survey: Galaxy Map

Levantamento Digital do Céu Sloan (Sloan Digital Sky Survey): Mapa de Galáxias Mapa de galáxias pelo SDSS que alcança até 2 bilhões de anos-luz. Pontos vermelhos e verdes indicam a posição de galáxias, onde pontos vermelhos indicam uma maior densidade de galáxias. Áreas totalmente pretas são partes do céu que são inacessíveis ao levantamento. (Veja também o vôo através do SDSS.)

Olhando a imagem da Camera da Energia Escura (Dark Energy Camera, acima), podemos ver um monte de objetos celestes, incluindo manchas de diferentes cores: azul, vermelho, e amarelo, muitas das quais são galáxias distantes. Pode parecer que elas estão distribuídas aleatoriamente no cosmo. Entretanto, astrônomos mapeando a posição de galáxias espalhadas ao longo de grandes distâncias verificaram que elas estão organizadas em estruturas, em padrões cósmicos que atravessam trechos do tempo e espaço muito maior do que o visto nessa imagem. A figura à direita, do Sloan Digital Sky Survey, mostra um mapa com milhões de galáxias. Essas galáxias parecem se aglomerar em nós e filamentos (áreas com muitas galáxias), deixando para trás espaços vazios (regiões com menos galáxias ou nenhuma galáxia). Algumas das estruturas filamentares se estendem por bilhões de anos-luz – 60 trilhões de vezes a distância entre a Terra e o Sol.

Como qualquer bom detetive, não podemos ignorar um padrão. Como galáxias, separadas por bilhões de anos-luz, se distribuem nessa grande estrutura cósmica que vemos hoje? Parece que o “chefe” dessa operação cósmica é um conhecido amigo (e inimigo) dos terráqueos: a força da gravidade.

Usando simulações feitas em computadores, astrônomos são capazes de investigar como a gravidade atua em tantas galáxias separadas por distâncias tão grandes. A Simulação Millenium, e outras como ela, mostram que uma distribuição inicial quase aleatória de matéria vai naturalmente se concentrar em filamentos e vazios através da atuação da força da gravidade. Quando comparamos estatisticamente os resultados das simulações com nossos dados (observações de muitas galáxias), os padrão encontrados são os mesmos: a influência da gravidade universo afora produziu essa grande estrutura filamentar, a qual é chamada, “A Teia Cósmica”.

Millennium simulation: https://i0.wp.com/www.mpa-garching.mpg.de/galform/virgo/millennium/seqB_063a_half.jpg
Simulação Millenium: áreas mais brilhantes representam maiores concentrações de matéria e galáxias. (Voe através dessa simulação nesse vídeo)

Mas qual é a importância disso para detetives trabalhando no Dark Energy Survey? Bom, ao que tudo indica, a força da gravidade tem um arqui-inimigo em seu objetivo de criar uma grande teia que atravessa todo o universo: a energia escura, uma força invisível que causa a expansão acelerada do espaço por todo o universo. Quanto mais rápido o espaço se expande e acelera, maior as distâncias que galáxias tem que viajar para formar filamentos e aglomerados. Se existe mais energia escura, a gravidade precisa de mais tempo para juntar galáxias, e a estrutura em forma de teia leva mais tempo para se formar. Se não existe energia escura, a teia é feita rapidamente. Ao estudar a velocidade com que a teia cósmica é construída ao longo do tempo, podemos revelar o quão forte foi a energia escura e se ela está ficando mais forte ou mais fraca.

A batalha entre gravidade e energia escura, contada através da evolução de estruturas na teia cósmica, é chave para estudar a energia escura. De fato, a teia cósmica é especialmente importante para responder uma pergunta bem específica: será que existe mesmo a energia escura?!?

A maioria dos astrônomos concorda que existe um grande número de evidências da expansão acelerada do universo. Por diversas razões, a fonte mais aceitável dessa aceleração é algum tipo de nova força ou de outra forma, de uma energia oculta, “escura”. Mas a principal teoria alternativa é a mudança das leis da gravidade (especificamente, das leis da Teoria da Relatividade Geral de Einstein). Já que físicos e astrônomos testaram exaustivamente as leis de Einstein na Terra, no Sistema Solar, e em galáxias, essa mudança só se manifestaria em escalas maiores. Isso poderia estar causando a aparente aceleração cósmica, de tal forma que não existiria realmente uma energia escura.

Essa segunda hipótese rescreveria nossos arquivos sobre a teia cósmica. Talvez ao invés de uma luta contra a energia escura, a gravidade não tenha o mesmo efeito previsto quando observada ao longo de bilhões de anos-luz. Medidas dessa teia, em conjunto com outras da aceleração cósmica, são fundamentais para nos dizer se nosso universo é um campo de batalha para a energia escura e a gravidade, ou se a gravidade é simplesmente diferente do que pensávamos anteriormente. Seja qual for a conclusão (e quem sabe até uma mais estranha ainda) ela significa uma profunda revisão de nosso entendimento do funcionamento do universo.

A medida que o Dark Energy Survey coleciona mais e mais belas imagens de centenas de milhões de galáxias ao longo de seus cinco anos de duração, nossos detetives vão analisar cuidadosamente suas posições, traçando a teia cósmica, na esperança de identificar que forças estão trabalhando na escuridão.

 

Detetive Ross Cawthon (Universidade de Chicago)

Imagem: Det.’s Marty Murphy e Reidar Hahn

Tradução: Det. Ricardo Ogando

%d bloggers like this: