A project of the Dark Energy Survey collaboration

Latest

Image

Our dark, tangled web: Where’s Waldo?

DES0428-33_6122_20141105_43

Cosmic structures woven together during the tug of war between gravity and dark energy present a multi-faceted challenge for scientists, as we seek to untangle each galaxy from the luminous cacophony of filaments and clusters across large swaths of space and time.

We love staring at the beautiful images taken by the Dark Energy Camera (DECam) at the Blanco telescope. The image above shows a cluster of galaxies laid on a backdrop of even more distant galaxies. To investigate the mysteries of the accelerating expansion, Dark Energy Survey (DES) scientists need to do a bit more – we need to develop a comprehensive census of the content across the universe: how many stars and galaxies are there in a given swatch of space-time fabric?

A critical step comes in creating a high-fidelity and detailed list of the observed celestial objects: these are called “catalogs” by astrophysicists and astronomers. The most common pieces of information are the position and brightness: this is the minimum information necessary to know where a galaxy resides in spacetime. 

With our hard-working scientists in the data management team and the powerful computers at National Center for Supercomputing Applications (NCSA), DES has developed new algorithms and pipelines for efficiently sifting the objects out of our images. We start with raw images straight from DECam, and then we refine them to remove artifacts, like satellite trails, cosmic rays and faulty pixels. From these “reduced” images, we must then find and characterize discrete objects, like galaxies and stars – cut the wheat from the chaff.

However, there is a limit to what we can do. For example, a very far-away object may appear extremely small and faint – so faint that it will look like a piece of the sky and get missed during the cataloging procedure. In some cases, it is not possible to tell the difference between a faint object and a noisy patch of sky. In addition, not every astronomical object is “willing” to be cataloged: it can be disguised as a part of another object. For example, near the center of today’s image,  there is a very large, bright galaxy with many smaller neighbors. Discerning all the objects here is similar to the difficulty one might have in noticing a flea in a picture of an elephant.

Objects also tend to hide from the computers when a piece of the sky is full of them: spotting a small object becomes as difficult as finding Waldo (Wally) on a crowded beach!

DES takes more detailed images than previous projects, like the Sloan Digital Sky Survey (SDSS). Thus, we are more pestered by the “hiding” objects problem. We see a more tangled web. As one solution, a group of DES scientists have employed an image restoration algorithm, derived from work by computer vision scientists. This algorithm successfully eliminates the impact of close neighbors when cataloging the “hiding” objects. Upon application to DES images, they have been able to find many “Waldos,” so we can add them to DES catalogs.

For more detailed description of the method, you can find a preprint of the paper here: http://arxiv.org/abs/1409.2885.

Det.’s Yuanyuan Zhang and B. Nord

Image: Det.’s Marty Murphy and Reidar Hahn

Image

A traves del mundo, observando toda la noche

DES2018-5248_RGB.Neb.crop.edit2.3.1000-px

Durante la pasada semana, los detectives del Dark Energy Survey (DES) provenientes de cuatro continentes se han reunido para sacar a la luz más pruebas de cómo el tejido del espacio-tiempo se está estirando y evolucionando.

Más de 100 detectives se reunieron en Sussex, Inglaterra, para discutir el estado actual y el futuro del proyecto que se lleva a cabo en el telescopio Blanco, ubicado en Cerro Tololo en Chile. En esta reunión semestral de la colaboración (que se celebra en una sede distinta cada vez), trabajamos en la creación de estrategias de análisis para los diversos métodos de estudio de la evolución del espacio-tiempo y la energía oscura. Mientras escribo estas líneas, los primeros resultados se están preparando para su publicación.

Mientras, en Cerro Tololo, un equipo de observadores opera la Cámara de Energía Oscura (DECam) en el telescopio Blanco, a medida que progresamos en la segunda temporada de observación del muestreo. Cada una de estas temporadas va de agosto a febrero, coincidiendo con el verano chileno.

El Telescopio Anglo-Australiano en el Observatorio de Siding Spring en Australia es la sede de OzDES: un proyecto a largo plazo para la obtención de medidas de distancia muy precisas de los objetos descubiertos por DES, tales como cúmulos de galaxias y supernovas. Estas medidas “de seguimiento” constituyen pruebas muy importantes para dilucidar la naturaleza de la energía oscura .

Y en Cerro Pachón, justo al este de Cerro Tololo, otro equipo compuesto por dos agentes comenzó a buscar evidencias de zonas del espacio con una gran curvatura en el cosmos distante, utilizando el Telescopio Gemini Sur (@GeminiObs). Pasamos seis noches trabajando en la medida de distancias muy precisas a sistemas con las llamadas “lentes gravitacionales fuertes”. Estos sistemas están constituidos por galaxias y grupos de galaxias que son lo suficientemente masivos como para distorsionar significativamente el tejido del espacio-tiempo. Espacio y tiempo se deforman tanto, que los rayos de luz que proviene de los objetos celestes – como galaxias y cuásares – que se encuentran detrás de estas galaxias masivas, se curvan significativamente a su paso por estos sistemas. Las imágenes resultantes en DECam se estiran o incluso multiplican – al igual que en una lente óptica. En futuros informes ampliaremos los detalles sobre este fenómeno.

Al mismo tiempo, las supercomputadoras del Centro Nacional para Aplicaciones de Supercomputación estadounidense (NCSA) procesan los datos de DECam cada noche, convirtiendo las imágenes en bruto en datos “refinados” – listos para ser analizados por los equipos científicos .

La imagen de arriba no muestra ninguna lente gravitacional fuerte obvia, pero constituye un ejemplo de la calidad de la “evidencia” que genera DES para sus detectives todas las noches.

Abajo os incluimos las posiciones de algunas de las galaxias que véis arriba. ¿Qué información podéis encontrar acerca de ellas? Existen varias herramientas electrónicas “forenses” que os pueden ayudar en vuestra investigación (por ejemplo,  http://ned.ipac.caltech.edu/forms/nearposn.html , tened cuidado de introducir las coordenadas en el formato correcto, como se muestra más abajo). Podéis tuitear vuestros hallazgos en @darkenergdetec, y así comparar nuestras notas.

RA: 304.3226d,    Dec: -52.7966d

RA: 304.2665d,    Dec: -52.6728d

RA: 304.0723d,     Dec: -52.7044d

 

Buenas noches, y no dejéis de mirar al cielo.

 

Det B. Nord

Imagen: Det M. Murphy

Traducción: Nacho Sevilla Noarbe

 

Video

Virando a noite mundo afora

DES2018-5248_RGB.Neb.crop.edit2.3.1000-px

Semana passada, detetives do DES fizeram ações coordenadas em vários continentes para reunir evidências de como o tecido do espaço-tempo está se expandindo.

Em Sussex, Inglaterra, cerca de 100 detetives se encontraram para discutir o estado atual e futuro do levantamento sendo conduzido no telescópio Blanco, localizado em Cerro Tololo, Chile. Nesse encontro semestral da colaboração (sempre em um lugar diferente), continuamos a planejar novas estratégias para “enquadrar” a evolução do espaço-tempo e energia escura: na verdade, enquanto escrevo essas linhas, vários resultados preliminares estão se preparando para vir a público.

Enquanto isso em Cerro Tololo, um time de observadores operava a Câmera da Energia Escura (DECam) no telescópio Blanco, caminhando em direção ao fim da segunda temporada de observações do levantamento. Cada temporada vai de Agosto a Fevereiro, aproveitando o verão Chileno.

No Telescópio Anglo-Australiano no Observatório Siding Spring na Australia, temos o lar do Levantamento OzDES – um projeto para obter medidas de distâncias altamente precisas de objetos descobertos pelo DES, tais como supernovas e aglomerados de galáxias. Essas “diligências” fora do DES são importantes para ajudar a montar o perfil da energia escura.

Já em Cerro Pachon, ao lado de Cerro Tololo, dois agentes começaram a procurar por evidências de desvios no espaço-tempo, usando o Telescópio Gemini Sul (@GeminiObs). Foram seis noites de trabalho para medir com grande acurácia a distância de sistemas de lentes gravitacionais fortes. Esses sistemas são galáxias ou grupos de galáxias que tem massa o suficiente para distorcer o tecido do espaço-tempo. A distorção é tão grande que raios de luz provenientes de galáxias e quasares que estão atrás desses sistemas se curvam. O resultado em imagens da DECam é a aparição de múltiplas fontes ou fontes distorcidas, tal qual em uma lente óptica. Nos próximos relatórios apresentaremos mais detalhes sobre essas evidências.

Nesse meio tempo, supercomputadores do Centro Nacional de Aplicações de Supercomputação (NCSA) estão processando na calada da noite (e do dia) os dados da DECam, transformando imagens em dados refinados – prontos para a análise dos times científicos.

A imagem acima não mostra nenhuma forte evidência de lentes fortes, mas é um exemplo do exemplar conjunto de evidências que o DES continua a acumular a cada noite.

Eis as posições de algumas das galáxias acima. Que informações você pode levantar sobre elas? Existem várias ferramentas na internet que podem te auxiliar nessa investigação (por exemplo, http://ned.ipac.caltech.edu/forms/nearposn.html; tome cuidado com o formato das posições ao entrar, use como abaixo). Tuíte seus achados para nossos agentes em @darkenergdetec, e podemos comparar nossas anotações.

RA: 304.3226d,    Dec: -52.7966d

RA: 304.2665d,    Dec: -52.6728d

RA: 304.0723d,     Dec: -52.7044d

 

Boa noite, e olho vivo,
Det B. Nord

Imagen: Det M. Murphy

Tradução: Det. Ricardo Ogando

Image

Afluentes del tiempo: hojas de otoño

DES2111-0124_20140923_03_gri_20140923_000.cut.edit1.6-1000pxEn el hemisferio norte, a medida que comienza la transición hacia el invierno, vemos los síntomas de este proceso en los cambiantes colores de las hojas. El animado tono verde del verano da paso a los amarillos, naranjas, rojos y morados del otoño. Las células vivas de las hojas tienen instrucciones sobre cómo reaccionar a ambientes más frescos y fríos. Esta reacción reduce la producción del pigmento verde, la clorofila, lo que permite que otros colores (creados por los pigmentos de los carotenoides y antocianinas ) prevalezcan. Cuando regrese la primavera, también lo harán las hojas, de nuevo con abundante clorofila productora de oxígeno. Año tras año, vemos este ciclo de muerte y renacimiento en el follaje a nuestro alrededor .

Pero… ¿y si fuéramos insectos? ¿Qué pasaría si, al igual que la moscas, viviéramos durante sólo uno  o dos días? ¿Tendríamos alguna forma de entender el inmenso tapiz en evolución que nos rodea? Imagina un único día en la Tierra, observando las hojas por todo el mundo – en diferentes ambientes y en diversos estados de salud y edad. Con sólo este día para crear una imagen coherente, ¿seríamos capaces de reconstruir el funcionamiento interno de este ciclo con estas pistas?

Este es el reto al que nos enfrentamos en la comprensión del ciclo de vida de las galaxias, las hojas de nuestro árbol cósmico de materia y luz. Para estos objetos celestes, de hecho somos como las moscas, que sólo viven durante un abrir y cerrar de ojos en escalas cósmicas de tiempo.

Observa la multitud de remolinos de polvo en la imagen de arriba. Sus colores abarcan todo el arco iris visible y más allá. Cada mancha de luz contiene miles de millones de estrellas. A través de nuestros telescopios, imágenes y espectrógrafos, aprendemos sobre los tipos de productos químicos de la materia que reside dentro de las galaxias. A través de la comprensión de la gravedad y la mecánica cuántica, vinculamos esta información a los posibles procesos físicos que están teniendo lugar.

De manera análoga a las hojas del árbol, los colores de las galaxias son el resultado de sus componentes químicos y reflejan su edad. Las galaxias azules, todavía jovenes, son lo suficientemente frías para estar todavía formando estrellas, porque sus estrellas jóvenes y el gas que las envuelve liberan luz azul al cosmos. Las galaxias rojas han visto como su periodo de formación estelar se extinguía: su gas ahora es demasiado caliente para que fuerza de la gravedad pueda colapsarlas en ardientes esferas. Estas galaxias rojas y muertas representan el final del ciclo de vida galáctico .

Si bien tenemos formas de observar las entrañas de las galaxias, aún no existe la manera de observar cómo se forma una galaxia, y mucho menos ver su vida entera. Cada una representa su propio afluente del río del tiempo, su propio pedazo del rompecabezas en la delta de la red cósmica .

Det. B. Nord

Imagen: Dark Energy Camera [Edited and logged by Det. M. Murphy]

Traducción: Nacho Sevilla

Image

Afluentes do tempo: as folhas de outono

DES2111-0124_20140923_03_gri_20140923_000.cut.edit1.6-1000pxNo clima temperado do Hemisfério Norte, quando o inverno está para começar, podemos perceber a mudança das cores das folhas. O verde brilhante do verão dá espaço aos amarelos, laranjas, e roxos. Isso ocorre porque as células das folhas tem instruções de como reagir a ambientes cada vez mais frios: essa reação reduz a produção de pigmento verde, a clorofila, permitindo que outras cores (causadas por pigmentos como carotenóides e antocianinas) passem a dominar a paisagem. Quando a primavera retorna, as folhas ressurgem cheias da clorofila produtora de oxigênio.

Ano após ano, esse ciclo de morte e renascimento afeta a vegetação ao nosso redor.

Mas e se fôssemos insetos? O que aconteceria se, como uma mosca, vivêssemos por apenas um dia ou dois? Será que teríamos a capacidade de compreender o desenho da grande peça de tapeçaria que nos envolve?  Imagine-se por um dia apenas na Terra, observando as folhas de todo o globo terrestre – em diferentes ambientes e com idades e condições de saúde variadas. Com o prazo de apenas um dia para criar um cenário coerente, será que conseguiríamos juntar todas as pistas necessárias para relacionar cores, ambientes, e o funcionamento das folhas?

Esse é o desafio que enfrentamos ao tentar entender o ciclo de vida de galáxias, as folhas de nossa árvore cósmica de matéria e luz. Para esses objetos celestiais nós somos de fato insetos efêmeros, vivendo apenas por um piscar de olhos numa escala de tempo cósmico.

Na imagem acima, imagine uma miríade de redemoinhos de poeira, com suas cores passeando por todo o espectro visível do arco-íris e além. Cada um deles contendo bilhões de estrelas. Através de nossos telescópios, cameras, e espectrógrafos, somos capazes de identificar os diferentes elementos químicos que compõem essas galáxias. Através de nosso entendimento da natureza, conseguimos conectar essas observações aos processos físicos, indo do longo alcance da gravidade até a pequeneza da mecânica quântica.

As cores das galáxias, assim como as das folhas nas árvores, também são o resultado de diferentes composições químicas e idades. Galáxias azuis são jovens e contem gás o suficiente para manter abertos os berçários estelares que ilumina o cosmo com sua luz azulada. Galáxias vermelhas já fecharam seus berçários de formação estelar pois praticamente todo o gás já foi consumido não restando nada para a gravidade colapsar em bolas de fusão nuclear. Essas galáxias “vermelhas e mortas” representam o fim do ciclo de vida de galáxias.

Embora possamos espionar o interior das galáxias e revelar o seu âmago, ainda não temos nenhuma maneira de testemunhar sua formação, e menos ainda, o descortinar de sua vida. Cada estrela representa um igarapé, e cada galáxia um afluente do tempo, um rio cujo delta é um grande quebra-cabeça cósmico.

Det. B. Nord

Imagem: Dark Energy Camera [Editado e registrado por Det. M. Murphy]

Tradução: Ricardo Ogando (@thespacelink)

Image

In the air tonight

 

Sometimes, you can feel it coming in the air of the night.

Weather is fickle, but when a night of observing begins, we usually know how it will go. The first part of this season was often rainy and gray. The last several weeks, however, have allowed for new records in precision the precision of DECam data.

On Nov 11 and Nov 18, 2014, the Dark Energy Survey took exquisite data of all of our supernova fields – the regions of sky selected specifically to look for exploding stars. It was clearer than anything we’d seen previously. The video above is from a night early in this season, when the weather was also extremely good (but only for a few days). It is a view, from inside the dome, of DECam and the Blanco Telescope scanning the sky over the course of one night in August, 2014.

After a few nights of clouds or rain, it usually takes another night or two for the atmospheric turbulence to die down. This turbulence deflects light as it comes through the layers of Earth’s atmosphere, effectively blurring an image. But when this turmoil is no longer there, the conditions can be pristine.

Sometimes, you can feel it coming in the air of the night. It’s the final moment for so much starlight.

We are here to see what it did, see it with DECam’s 570 million eyes. DECam’s been waiting for this moment all of its life. Now we know where you’ve been, traversing the dark night skies.

The light of distant galaxies and stars has been waiting for this moment all that time.

Now forever, we remember where the light has been, how could we forget. When our detectors capture it, it’s the first time, the last time, we’ve ever met. We know the reason you kept your silence up. When it was cloudy, how could we know. When it’s clear, the signal still grows, the universe no longer a stranger to you and me.

Sometimes, you can feel it in the air of the night.

 

 

 

Det. B. Nord

[Hat tip to Phil Collins.]

Video

As the sky turns: the fall and rise of the Milky Way

 

We are swept up in a cosmic merry-go-round.

Earth spins relative to the sky – about one revolution every 24 hours.

After twilight, our nearest star, the Sun removes its warm blanket of light, revealing the dancing lights overhead: collections of aeons-old galaxies and constellations of distant stars fill the night sky. For some precious hours, we have exquisite access to these pinpricks and smudges of light that have always swirled overhead – until we bask again in the Sun’s rays. During the day, all blinking tapestry is still above us, but the Sun washes out any hope of seeing it. Again, after dusk, familiar patterns fill the sky, as the dancers return like clockwork to their positions on the celestial stage.

Our entire solar system resides in a galaxy, the Milky Way. The Galaxy’s structure includes spiral arms and a disk of stars and gas: our pale blue dot, tethered to the Sun, is nestled in the suburbs, halfway to the edge of the Galactic disk. As we turn from day to night to day, the Galaxy itself also spins (over much longer periods than Earth’s day).

During the course of our daily/nightly sweep of the heavens, just as the stars and galaxies move across our sky, so does the disk of Milky Way. When we look up from the dark mountain tops of Cerro Pachon, we look into the plane of the Milky Way, into the heart of our Galaxy.

In the video above, the camera rotates from East to West through South – taking a picture every 30 seconds over the course of the night. Earth’s axis goes through the South pole, so we see the sky spin about that point: one side of the Milky Way sets, and by 1am on this October night, another side begins to rise.

Good night, and keep looking up,

Det. B. Nord

 

 

 

Follow

Get every new post delivered to your Inbox.

Join 46,776 other followers